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Convergence of the Vortex Filament Method 

By Claude Greengard* 

Abstract. Fully discrete convergence estimates have previously been given for the three-dimen- 
sional vortex method proposed by Beale and Majda. It is shown in this paper that vortex 
filament methods of the kind used in practice converge, provided smooth vortex structures 
consisting of closed filaments are appropriately discretized, and the stretching of the discrete 
filaments is computed sufficiently accurately. The error estimates obtained are those of the 
previous theory. 

1. Introduction. Many interesting numerical experiments have been carried out 
over the past decade by various authors in which three-dimensional, incompressible, 
inviscid fluid motions are calculated by vortex filament methods. In these methods 
initial fields of vorticity are approximated by one or more discretized vortex 
filaments; the evolution in time of the filaments is determined by computation of the 
interactions of these filaments with one another and with themselves. Leonard has 
recently surveyed numerical experimentation with three-dimensional vortex methods 
[11]. 

A convergence theorem for the filament method is presented in this paper. It is 
shown that if sufficiently smooth vortex structures consisting of closed filaments are 
appropriately discretized, and the stretching of vorticity is computed accurately, then 
the particle trajectories which are calculated in the algorithm converge to the exact 
trajectories as the spatial and temporal discretization parameters go to zero. The 
analysis given in this paper suggests appropriate choices for weight factors and 
vortex stretching formulas in the filament method, the adoption of which leads to 
convergent schemes. We note that it follows from the convergence of the trajectories 
that the computed velocity and vorticity converge (the latter in a weaker norm, 
however) as well. 

The statement of the convergence theorem and its proof are closely related to the 
paper by Anderson and Greengard [1], which in turn owed much to the convergence 
theory of Beale and Majda [2], [3]. Beale and Majda gave the first convergence proof 
for a three-dimensional vortex method, following Hald's convergence proof [9] for 
the planar vortex method. A major difficulty in the analysis of three-dimensional 
vortex methods, not present in the two-dimensional case, is the necessity of estimat- 
ing the errors introduced in the vorticity by a numerical approximation of vortex 
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stretching. This difficulty was very nicely overcome by Beale and Majda [2], [3], who 
studied an algorithm of their own design in which the initial fluid particle positions 
are the nodes of a cubic mesh and in which derivatives in time of the vorticity are 
evaluated by application of a centered finite-difference operator (with respect to the 
Lagrangian variables) to the computed velocity field. A stability error bound on the 
velocity was obtained involving, in part, the discrete Sobolev H-1-norm of the error 
in vorticity, which is converted into an H0 (= L2)-norm of the error in the flow 
map. Semidiscrete (spatial, but not temporal, discretization) convergence estimates 
were obtained of arbitrarily high-order accuracy using this stability result and a 
consistency lemma. The consistency results of [2], [3] were strengthened and sim- 
plified in [1] (following work of Cottet [6]). Fully discrete convergence estimates, 
which follow directly from the stability and consistency lemmas, were also given in 
[1]. 

The filament method, in which the fluid particles whose trajectories are calculated 
lie along vortex filaments, is in general more natural to implement and reveals vortex 
structures better than the method studied in [2]. The vectors of vorticity used in the 
calculation of the particle velocities in the filament method are evaluated by 
computation of the separation of neighboring particles along the filaments. It was 
pointed out in [1] (see also the example in Section 2 below) that this amounts to the 
evaluation of vortex stretching by the application of a Lagrangian finite-difference 
operator to the set of particle positions. A fortunate consequence of this fact is that 
modifications of the ideas in [1], [2], [3], [6] can be used to obtain a convergence 
proof for the filament method. We describe now briefly the main ideas of the proof. 

The convergence of a three-dimensional vortex method requires that the singular 
integral which expresses the velocity as a function of the vorticity be accurately 
discretized, that the stretching of vorticity be accurately approximated, and that the 
algorithm be stable. The filament method can be shown to satisfy these three 
requirements by reliance on a particular coordinate transformation. This transforma- 
tion is a map from a subset of R3 (which is periodic in one direction) to the support 
of the initial vorticity field such that the pre-images of vortex filaments are parallel 
lines. The images under this transformation of the nodes of a cubic grid serve as 
initial positions of fluid particles. Vortex stretching is evaluated by the application of 
a finite-difference operator along the filaments which is inherited through the 
coordinate transformation from a finite-difference approximation, on the cubic grid, 
to the partial derivative in the filamental direction. A formulation of the filament 
method is described in Section 2. The algorithm there defined is the subject of 
analysis of the following sections. 

A version of the Stability Lemma of Beale and Majda [2] is presented in Section 3 
(Lemma 3.1). A brief remark about the terminology is in order. The method of Beale 
and Majda, as they presented it, is a system of ordinary differential equations with 
both the particle positions and the values of vorticity as independent variables. 
Although this algorithm is identical to the system of ordinary differential equations 
in particle positions alone reformulated in [1] (where vorticity values are given as 
explicit functions of the set of particle positions), the notions of stability and 
consistency are slightly different. In fact, Lemma 3.1, though primarily a statement 
about the stability of the algorithm, is also used in the proof of consistency. 
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The nodes of the cubic grid and the volumes of the cubes of the grid form, 
respectively, the nodes and weights of the trapezoidal rule integration formula. By 
requiring the coordinate transformation described above to be smooth, and by 
multiplying the integration weights by the Jacobian of the transformation, we obtain 
an accurate integration formula on the support of the initial vorticity field, with 
nodes which lie along filaments. The smoothness of the coordinate transformation 
also implies that the difference formula used to evaluate vortex stretching is as 
accurate as the difference scheme from which it is inherited. In Section 4, it is 
observed that the consistency of the filament method follows. 

The lemma showing stability of the filament method is presented in Section 5. It is 
an immediate consequence of Lemma 3.1. 

The convergence theorem is stated and proved in Section 6. The error estimate 
given there is a bound of C(QP + hr + h'3-' + Atm) on the discrete L2-norm of the 
error in the position of the filaments. Here h is approximately the initial distance 
between neighboring particles used to resolve the vortex filaments, 8 is a smoothing 
parameter, and At and m are, respectively, the size of the time step and the order of 
accuracy in a discretization in time of the ordinary differential equations which form 
a spatial discretization of Euler's equations. The constant C depends on the time 
interval in which convergence is proved and on the integers m and p, r, 1 > 4. The 
proof of this convergence theorem follows from the stability and consistency lemmas 
in the same way as in [1]. 

Numerical calculations of the interaction of two vortex rings, using a vortex 
filament method with Lagrangian spatial discretization as described in this paper, 
are reported in [8]. 

We conclude this introduction by mentioning that one can evaluate vortex 
stretching locally, by an explicit differentiation of the computational velocity field, 
rather than by finite differencing ([1], [12]). The filament method, however, still 
seems to be a better choice for inviscid calculations, while the local alternative is 
important because viscous effects can be incorporated into the algorithm by random 
walking (see [1] for further discussion comparing the two alternatives for evaluating 
vortex stretching). 

2. The Vortex Filament Method. We introduce a vortex filament method in this 
section for which convergence obtains. We begin by recalling Euler's equations and 
then reformulate them in such a way that our filament method suggests itself as a 
natural and accurate discretization. 

Let iq: R3 R3 be a smooth, divergence-free, and compactly supported vector 
field, and let [0, T] be an interval of time on which a smooth solution to Euler's 
equations exists with q as initial condition on the vorticity W: R3 x [0, T] R3 [10]. 
w satisfies the system of equations, called the vorticity formulation of Euler's 
equations, 

(2.1) Cw(X, O) = (X), 

(2.2) aw/at +(u V)W = (w * V)U, 

(2.3) u = K*w. 
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Here the velocity u: R3 x [0, T] R3 is the divergenceless vector field whose curl is 
w, K is the matrix 

0 x3/IxI -x2/3 x 3 

-X3/IXI 3/ 0 X1 xiIx 
K(x)= 4 -X3/1X ? l3 3 

X2/IX 13 -xl/lxI 3 0 

and * denotes convolution. 
The flow map 0: R3 x [0, T] R3 corresponding to the solution of (2.1)-(2.3) is 

defined by 

(2.4) 0(ag ) = a, 
(2.5) a4(a, t)/at = u(0(a, t), t). 

We abbreviate D)a(t) = 4)(a, t), ua(t) = u(4a(t), t), and wa(t) = w(a(t), t) and 
define the Lagrangian functions ?(t), u(t), and w(t) by setting ?(t)(a)= = (t) 
u(t)(a) = ua(t), and w(t)(a) = wa(t). 

A consequence of Euler's equations, and a basis for the construction and analysis 
of three-dimensional vortex methods, is the well-known formula 

(2.6) wa(t) = (D4D(t)(a)) -7(a), 

where DO(t) is the derivative of ?(t) with respect to the spatial variables. Equation 
(2.6) expresses the fact that vectors of vorticity along particle trajectories expand and 
contract in proportion to the stretching of the fluid in the direction of the vorticity. 

Let A denote the support of q. We make the following simplifying assumption on 

,q: There is a compact (though not necessarily connected) set B C R2, a diffeomor- 
phism (a smooth, nonsingular bijection) X: A -+ A, where A = B x [0, 27T] (with 
faces B x (0) and B X {T2T) identified), and a function c: A -+ R such that 

(2.7) 71(X(a)) = a8X(&) 

for & = (b,g ) E A. Here a. denotes differentiation in the 4 direction. Thus, for 
b E B, the images under X of the (closed) lines { b ) x [0, 2 T] are vortex filaments at 
time t = 0, that is, integral curves of q. 

We push forward the operator a. from A to A, and so define an operator ae of 
differentiation along the filaments, by setting 

ao+(a) = c(a)a0,(*Io X)(X-1(a)) 

for functions ': A W R3. Observe that the operator ae is proportional to the 
magnitude of the initial vorticity field and that a86,(t)(a) is proportional to the 
stretching at time t of the vortex filament which runs through a at time 0. In fact, 

(2.8) Wa(t) = (DD(t)(a)) -q(a) = c(a)(DD(t)(a)) * aj(X-1(a)) 

= c(a)AJ,(4(t)o X)(X-1(a)) = ae4)(t)(a). 

Define 

(2.9) U[4D(t),w(t)](a) L K(4)a(t) - 4)?(t))wp(t) d,. 
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By a change of variables in the integral (2.9), it can be verified that U[4.(t), o(t)](a) 
= Ua(t). Recalling Eqs. (2.4), (2.5), (2.8), we write Euler's equations in the form 

(2.10) a(?) = a, 

(2.11) aD(a, t)/at = U [D(t), a86D(t)] (a). 

A discretization in space of the system of equations (2.10)-(2.11), resulting in a 
system of ordinary differential equations, will now be described. Inspection of Eq. 
(2.11) shows that a discretization of the integral which defines U and an approxima- 
tion to the vorticity ae'1 are required. A suitable system of finitely many equations 
can be obtained by following the positions of a finite number of particles, with 
Lagrangian coordinates which we denote by ai. The positions ai will be chosen to lie 
along initial vortex filaments, so that the vorticity ae4' can be approximated by a 
finite-difference operator, and with the filaments to be resolved so spaced that the 
integral in (2.9) is accurately approximated by a finite summation. 

We denote by h a spatial discretization parameter, which we take to be of the 
form h = 2'r/m, where m is a positive integer. For i = (i1, i2, i3) E Z3, we set 
j = (bi, ,i), where bi = h '(il, i2) and oi = hi3. The set I(h), which is an index set 
for the system of ordinary differential equations corresponding to the discretization 
parameter h, is defined by 

I(h) = {i E Z3: h - i E A) = {i E Z3: bi E B and 1 < i3 < mi. 

Thus, the set of &i, for i E I(h), is the intersection of the set of nodes of a cubic grid 
of mesh-width h with A. For these i, we set ai = X(&i) and p8 = h3jDX(a&)j, where 
IDX(ai)l is the Jacobian of the transformation X at &i. The ai will be taken to be 
the initial positions of the fluid particles in the algorithm. Observe that the ai 
corresponding to a fixed value of bi lie along one vortex filament, and that the set of 
nodes and weights { ai, pi }, being the transformation of the set of nodes and weights 
of the trapezoidal rule, forms an integration formula on A of infinite-order accuracy 
(see Section 4). 

Vorticity is evaluated in the algorithm by a discrete approximation to the 
derivative of the flow map in the filamental direction. Let ah denote a discrete 
difference approximation (defined on the grid {<xi}) to 8a, with ah defined ap- 
propriately near the 4 = 0 and 4 = 21T faces of A in view of the partial periodicity 
of A. Then we define the approximation 8S, of 89 by setting, for ii: {a1 e A }R 

ah*4(ai) = C(,CXi)ah^(* ? X)(ai). = o 

We denote by 4b1(t) the numerical approximation to 0i(t) = 4a,(t), and, as 
before, let ?(t): aii E A) - R3 be the map 4(t)(,ai) = ci (t). The vortex filament 
method whose convergence is proved in this paper consists of a numerical approxi- 
mation of the solution of the following system of ordinary differential equations: 

(2.12) =i (?) 

(2.13) d4Oi(t)/dt = 
- 

[?(t), ah$(t)] i, 

where U is the discretization of (2.9) defined for I, Q2: { ai E A)} R3, by setting 

(2.14) (t[',]i= &[4,'](ai)= E Ks(*s- j)gjpj 
j 1(h) 
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and K8 is a member of a family, parametrized by 8, of continuous approximations 
to K. The notation i = T(a), Qi = Q(ai) has been employed. 

Example. Consider a set of k vortex rings A1,..., Ak, with cross sections 
identified with the pairwise disjoint sets Bl,..., Bk C R2. The vortex rings may be 
unlinked or linked, knotted or not. Denote by Xm the natural identification Xm: 
Bm X [0, 2-] -Am, for m =,...,k. Set 

k k k 

A= UAm B = U Bm A = B x[0,2'2, and X= U Xm: A A. 
m=1 m=1 m=1 

Take a' to be the centered-difference operator ah (4)(&i) = (v - i_+)/2h 
where 4 = (0, 0, 1). Observe that IDXI = ,X . Thus, 

ah$4(t)(aC)pi = c(ah)a,(4(t)? X)(&a)JDX(&J) |h3 

= a, h($(t) ? X)(&J )Ij(ai) jh3 = ( -i+ (t)-i (t))Fi, 

where Fi = lq(ai)lh2/2. Equation (2.13) then takes the more familiar looking form 

dt 'i(t) = EK- -(t)-j(t))($j+,(t)- $_(t))Fj. 

See [51, for example, in which Chorin evaluates vortex stretching also by a 
centered-difference operator, though his operator is centered at the midpoints of the 
line segments joining adjacent particles, rather than at the particle positions them- 
selves. 

Assumptions on K,. In order to prove sufficiently strong accuracy and stability 
results for convergence of the filament method to follow, certain assumptions need 
to be made on the smoothed kernels used in the algorithm. These conditions are the 
same as those given in [1] and are somewhat milder than those originally stated in 
[2]. We assume that for two integers 1, p > 4, the kernels K, are of the form 
K8 = K * fs, where fs(x) = 8-3f(x/8), R f3 = 1, f E C'(R3), and f satisfies the 
additional conditions: 

(i) JR3 xOf(x) dx = 0, for all multi-indices /3 such that 1 < I/,I P - 1, 
JR3 IxIPIf(x)Idx < oo; 

(ii) IxI3I+ D'f(x)I < C for some C, and all fi such that IfBI < 1; 
(iii) IxI+I Sf(x) I < C for some constant C. 
A discussion, with examples, of functions f satisfying these conditions is given in 

[4]. The functions f and f8 are often referred to as cutoff functions. 

3. An Important Lemma. The lemma presented in this section, which is a 
modification of the Stability Lemma of Beale and Majda [21, is used both to prove 
stability and consistency of the filament method. Before stating the lemma, we 
define some norms. 

For functions 'I: (ai E A) R3 and y: {&i E A) - R3, set 

L*(A) H~~2 = (IYi L P IIDYII2A ( E 12) //2 
i E= 1(h) i E= 1(h) 

11 Y 11H#(A) ( 11 Y jlL~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~2(A) + 11 D Y 12(A)) 

IIY IHhlA) SUp | y ( ii h3 ) I/II YII Z(A )9 
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where the supremum in the last definition is over all functions y defined on I(h), 
D+?y is the discrete (forward-difference) gradient of y (extended by periodicity in 
the periodic direction), and the pi are the integration weights introduced in the 
previous section. Of course, the L'(A) and L^(A)- norms are equivalent in the sense 
that III o XIIL2(A) K C1II'IIL2(A)< C211* o XIIL2(A2) with C1, C2 independent of h 
and '. 

LEMMA 3.1. There is a constant C such that for all t E [0, T] and all ', 1: 

{a,i E A) R3 such that III - 0(t)IIL2(A) < Sh 

||U[+ Q]- U [4?() @(t)]IIL2(A) 

< C(| - (t) IIL 2(A) + Il(Sa @ (t)) oXIIH*1A) 

We do not give the proof. Lemma 3.1 can be proved readily by minor modifica- 
tion of the proof of the Stability Lemma in [2], as we now discuss briefly. Recall that 

U[t, = E K8(P(a )-)(aj)) ()p1 
j 1(h) 

= EK8((* o X)(&i) -(4 o X)(oj))(Q o X)(&1)p1. 
i 

This sum is very similar to that studied in [2]. The three differences are that X, and 
hence 4(t)o X, is in general not measure preserving, the pj are not all identical 
(= h3 in [2]), and the space A is periodic in one direction. These differences are of 
minor consequence. The first two lead to increases in the constant of the estimate by 
factors involving the maxima of the Jacobians of X and of X-1, which are bounded 
a priori. The estimate, 

(3.1) I gIL()- < Ch -1/211 D+g L2(A 

is used in the proof in [2] and is valid for grid functions g having support contained 
within A. It can be replaced by the estimate 11g1IL'(A) < Ch-l/2llgllHF(A) valid for 
periodic functions g, which follows from (3.1) by extending g by periodicity and 
then multiplying g by a cutoff function. The constant C is of course increased. 

It should be mentioned that a consequence of the restrictive hypothesis of Lemma 
3.1 is that the convergence proof requires the condition p > 4 on the cutoff 
function, and thus does not apply to the so-called second-order kernels. Carrying out 
the whole convergence theory in Lq (in place of L2) spaces, however, with q 
sufficiently large, one can show indirectly L2_convergence of the algorithm even with 
p = 2, as was done by Beale and Majda for their method [3] (and discussed in [1]). 

4. Consistency. We study the accuracy of the filament method in this section. 
Thus, we seek a bound on the difference between the exact fluid velocities and the 
velocities calculated by the algorithm from the exact particle positions. Let t E [0, T] 
be fixed for the remainder of this section. The constants in the error bounds 
obtained below are independent of t (but not of T). 
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The consistency error estimate is naturally split into three parts. For the error in 
velocity at the ith particle, we have 

|CU [ ?(t), ahb ?)- ui (t) 

U[?(t), ah ?(t)] i- _U [(D(t), W(t)] i 

(+ CT[4(t),W(t)] - f K8(4.(t) - 4fi(t)) wf(t) df3 
(4.1)A 

+ L K8(Oi(t) - 0fi(T)) wf(t) df3 

- K(Oi(T) - 4,(t)) w(t) df|. 

The first term on the right-hand side of Eq. (4.1) represents the difference between 
velocities computed at the exact particle positions using, on the one hand, the correct 
values of vorticity, and, on the other hand, the finite-difference approximation to the 
vorticity. The second term represents the difference between the velocity computed 
by the algorithm from the correct particle positions and correct vorticity values and 
the exact velocity smoothed by the cutoff function f6. The final term is the 
difference between the exact velocity and its smoothing. We now proceed to consider 
these terms in turn and then present the consistency estimate (Lemma 4.5) needed 
for the convergence proof given in Section 6. 

Assume that a is r th-order accurate. Then, since 

jh(t)(ai) - wi(t) I = ja4(t)(ai)- e4(t)(a,) I 

= Ic(ai) i1(a -a,)(e(t)o X)'(&i) , 
we conclude from the smoothness of ?(t), X, and c that there is a constant C such 
that 

(4.2) lijjah(t) - W(t) jjHS1(A) < Ch'. 

Application of a simple case (4 = ?(t)) of Lemma 3.1 and Eq. (4.2) yields 

LEMMA 4.1. If a is of rth-order accuracy, then there is a constant C such that 

||UT[0(t), ah4D(t)] -_[!t,() |L()<C 
The second term to be estimated is Ed (0i(t)), where Ed is the discretization error 

Ed(X) = L K6(x - Ia(t))wa(t)da - E KA(x- -j(t))wj(t)pj 
A~~~~~~~~~~ e 1(h) 

Observe that Ed(x) is the error in the application of the intergration formula with 
nodes ai and weights pi to the function F(a) = K8(x - 4(t)(a))w(t)(a)- This 
integration formula is arbitrarily accurate, in the sense that for all integers 1 > 4, we 
have 

LEMMA 4.2. Let F: A -* R with supp(F) C A. Then, for some constant C 
independent of h, 

f F(a)da - , F(ai)pi < C||F || W1(A)h', 
we F /(=m A gDi 1(h) 
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Proof. Let G: A R be the function G = (Fo X) DXI. It can be seen, by a 
change of variables, that 

j F(a) da= G(&) d&, E F(ai)pi = E G(j)h3 
A A iEI(h) iEI(h) 

Thus, the quantity estimated in the lemma is the error in the application of the 
trapezoidal rule to the smooth function G, defined on A, which is periodic in one 
direction and vanishes at the boundaries in the other two directions. The arguments 
given in the proofs of Lemmas 9 and 12 by Cottet and Raviart [7] show that 

||G( a) da - , G (&ij)h 
3 -< CII G Ijw' '(Aj)h1 A ~~~~~~i 1= (h) 

for a constant C independent of G and h. The lemma now follows from this 
estimate and the assumed smoothness of X. 

LEMMA 4.3. There is a constant C independent of h and 8, such that 

liEd|IL-(RW) < Ch'81-'. 

Proof. Fix x E R3 and let F be defined as above. Then 

I Ed (X) I < C11 F W1W'l(A)hl 

for some C. A consequence of the hypotheses on the smoothing function f is the 
estimate JA IDPKs(x - 4?D(t))Ida < C8'-', for Ifil < 1 and all x [1], which follows 
from the pointwise estimate ID Ks(x) I < C(max(x, 8))-2- [2]. The a priori bounds 
on derivatives of ?(t) and w(t), together with the above absolute integral estimate 
on DfK8, yield 

IIFIIWI1(A)< CS 

with C independent of 8, h, and x, from which the lemma follows. 
The final term on the right-hand side of Eq. (4.1) can be written as Em(QIi(t)), 

where 

Em(x) = (K8 * w(t))(x) - (K * w(t))(x) 

is the error due to replacement of K by K8 in the integral formula which gives the 
velocity as a function of the vorticity. The special moment condition (i) on the cutoff 
function f, which was suggested by Beale and Majda for their vortex method [2], 
implies that K8 is an accurate approximation to K, in the following sense. 

LEMMA 4.4. There is a constant C, independent of 8 and h, such that 

ItEm IILX(RW) < C8 P . 

The reader is referred to [1] or [2] for a proof. 
The stability result used in the convergence proof being in the discrete L2-norm, it 

is most useful to estimate the consistency error in this norm as well. 

LEMMA 4.5. For some constant C, 

jIlT[b(t),aj (t)I - u(t) IIL1(A) C(h81-1 + 8 + h ). 
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Proof. This result follows immediately from Lemmas 4.1, 4.3, 4.4 and the fact that 
for compact sets the discrete L2-norm is bounded by a constant times the supremum 
norm. 

5. Stability. Lemma 5.1 shows that the filament method is stable, in the sense that 
for sufficiently small errors in the computed trajectories, the discrete L2-norm of the 
difference between the velocity computed from the exact particle positions and the 
velocity computed from the approximate particle positions is bounded by a constant 
multiple of the norm of the error in position. 

LEMMA 5.1. There is a constant C, such that for all t e [0, T], and all ' such that 

II1(t) - 'IIL2 (A) < Ah 3/ 

U ( ? - U[TV, aa ,] ||L2(A) < CI|D(t) - L (A) 

Proof. By definition, 

(ah4D(t) - ah*)(ai) = C(aJ)ah((F(t) - )a X)(&i). 

Thus, since the c(ai) are bounded, we have from Lemma 3.1, 

-lU c ?t)] U[hP, aa] ||Lh(A) 

? c(|| (t) - 'I 
L*(A) + ll(ahF(t) 

- 
ah*) X XlH()) 

C c(112(t) "IIL(A) + Ilah((F(t) - )a X) |H.1(A)) 

<- C(||D(t) - 11L 2(A) + 1100) )?X|L())<CI(t) - IL(A)9 

where the third inequality above follows from the fact that, as for first-order 
differential operators between the continuous spaces, consistent difference operators 
ah give rise to bounded operators from Hs j to L2 (see [2]).The constants C here are 
all different, of course. 

6. Convergence. We are now ready to present the convergence theorem. 

THEOREM. Assume that ah is an rth-order accurate centered-difference operator. Let 
h, 8, and At = T/n1 be sufficiently small, and assume I > 4, r > 4. Let Fn denote 
the approximation to 1'i(nAt) obtained from an integration of Eqs. (2.12)-(2.13) by a 
Runge-Kutta method of order m = 1 or m = 2, and set (D n = 1i(n At). Let C1 be the 
maximum of IIa2F (t)/at2II L- (A) and of the constants C appearing in the statements of 
Lemma 4.5 and Lemma 5.1, and set C2 = exp(C,T) - 1. Then 

max lie IIL2(A) < C2(8P + h + h'S'-' + Atm), 

where e7 = -!n _ ? n provided C2(8P + h r + h'S'- l+ Attm) A Sh 3/2 

The proof of the m = 2 version of this theorem is very similar to the proof of 
Theorem 3.2 in [1], to which the reader is referred. We content ourselves here with 
giving the much shorter proof of the m = 1 (Euler's method) case. Thus, we prove 
convergence of the algorithm 

?!iO = ati, n = 1 n + AtU [I , ah$n] i 
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Proof of Theorem (case m = 1). The argument proceeds by induction. We will 
show that 

n-1 

(6.1) lie IIL2(A) < C1/At ( (1 + CiAt)) (SP + hr + h'8' ' + At) 
j=O 

for all n < n1, from which the theorem follows. Since e? = 0 for all i, (6.1) is 
satisfied for n = 0. Now assume that (6.1) is satisfied for some n < n1, and set 
t = nAt. Since C1At j (1 + CA t)' JA exp(CyT)(- 1 = C2, it follows from (6.1) 
and the hypothesis on the parameters stated in the theorem, that 

Ile IlLh(A) < Sh3/2 

This inequality permits application of the stability estimate Lemma 4.5 below. Since 

en+?1 = ,D n+1 - 
(Dn+1 

= In + AtU -(in + Atu (t) + O(At2)) 

we have 

le,n?1 IjI4 - IDn I+ At|lJ[D ,a hn], - u1(t)I+ C1At2 

< |en |+ A/tl U [$nahan] -U [(Dn, ahDn]i 

+40t|U[o n,ah],n- ui(t)I+ C1At2. 

The application of Lemmas 4.5 and 5.1 to the above inequality yields 

le n|IL2(A) < (1 + C,At)|en IIL2(A) + A&tC(P + hr + h'&' + At), 

from which the n + 1 case of Eq. (6.1) follows. 
Remark 1. In practice, the filament method described in this paper is inadequate 

for the computation of all but the simplest flows, since in regions of large strain in 
the filamental direction, the computational elements get pulled far apart from each 
other, and it is necessary to interpolate new particles. It would be very interesting to 
obtain a convergence theorem which permits the interpolation of new points in the 
algorithm. 

Remark 2. The convergence theorem as stated above assumes that the integration 
formula used in each "cross section" is the trapezoidal rule. In fact, any sufficiently 
accurate planar integration formula, in combination with the trapezoidal rule 
applied in the filamental direction, yields a convergent vortex method. For example, 
one can use a radial distribution of points when dealing with vortex rings of constant 
cross section. 

Remark 3. As was pointed out in a similar situation in [2], the convergence of the 
particle trajectories implies convergence of the vorticity and of the interpolated 
velocity fields. Consider the approximate vorticity aI hn, for example. Setting 
con(ai) = ((Dn, nAt), we have 

1 - aO f|H,(A) <I I - a(D 0I) 1H'(A) +Ija6(In - Hn) IH,1(A) 

< Chr + C|4 - IIL2(A) < C(8P + h + h'81' + Atm). 
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Remark 4. Convergence estimates similar to those of the theorem, with arbitrarily 
high integers m as exponents of At, can be given for a class of explicit multistep 
ordinary differential equation solvers of order m. See [1] for a similar proof of this 
assertion for the Beale and Majda algorithm. 
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